

Leading Interdisciplinary Science

Precision Medicine Symposium

PGx Beyond Drug Metabolizing enzymes, An Integrative Physiology Approach

> Ryan Sprissler, PhD Staff Scientist, Manager - UAGC University of Arizona Genetics Core Center for Applied Genetics and Genomic Medicine

> > *Office (104 BSRL) 520.626.4882 lab 520.621.9184*

HE UNIVERSITY

OF ARIZONA.

Leading Interdisciplinary Science

"There are approximately 75,000 genetic tests on the market, with about ten new tests entering the market daily¹"

Percentages of spending on genetic testing in six clinical domains, by quarter, 2014-16

¹Phillips KA, Deverka PA, Hooker GW, Douglas MP. Genetic Test Availability And Spending: Where Are We Now? Where Are We Going?. *Health Aff* (*Millwood*). 2018;37(5):710–716. doi:10.1377/hlthaff.2017.1427

Leading Interdisciplinary Science

Of the 75K available tests, 86% of the genetic tests were single-gene tests. The remaining tests were panel tests, including 9,311 multi-analyte assays with algorithmic analyses, 85 noninvasive prenatal tests (NIPT), 122 whole exome sequencing tests (WES), and 873 whole genome (WGS) analysis tests¹

Percentages of spending on types of genetic testing, by quarter, 2014–16

¹Phillips KA, Deverka PA, Hooker GW, Douglas MP. Genetic Test Availability And Spending: Where Are We Now? Where Are We Going?. *Health Aff* (*Millwood*). 2018;37(5):710–716. doi:10.1377/hlthaff.2017.1427

Hypertension as a risk factor

Underserved Populations

Racial Differences in Antihypertensive Drug Use and BP Control

Feb 03, 2017

UNIVERSIT

OF ARIZONA

 Authors:
 Gu A, Yue U, Desai RP, et al.

 Citation:
 Racial and Ethnic Differences in Antihypertensive Medication Use and Blood Pressure Control Among US Adults With Hypertension: The National Health and Nutrition Examination Survey, 2003 to 2012. Circ Cardiovasc Qual Outcomes 2017; Jan 17: [Epub ahead of print]. C^a

 Summary By:
 Melvyn Rubenfire, MD, FACC

Study Questions:

Are there racial differences in antihypertensive drug utilization patterns and blood pressure (BP) control by insurance status, age, sex, and presence of comorbidities?

Results:

There was a significantly (p < 0.001 for each) greater percentage of blacks and Hispanics between 18-39 years, higher rates of diabetes, less CKD, nearly a 2fold higher poverty-to-incomeratio, and baseline mean sBP and mean dBP were about 3/2 mm Hg higher. During the study period, all three racial groups (whites, blacks, and Hispanics) experienced a substantial increase in hypertension treatment and control. The overall treatment rates were 73.9%, 70.8%, and 60.7%. Hypertension control rates with JNC 7 were 42.9%, 36.9%, and 31.2% for whites, blacks, and Hispanics, respectively (p < 0.001), and a >10% better control was noted in JNC 8 for each group. When stratified by insurance status, blacks (odds ratio [OR], 0.74 for insured and 0.59 for uninsured) and Hispanics (OR, 0.74 for insured and 0.58 for uninsured) persistently had lower rates of hypertension control compared with whites. Unlike black patients, Hispanics received less intensive antihypertensive therapy (OR for combination therapy, 0.77). Racial disparities also persisted in subgroups stratified by age (\geq 60 and <60 years of age) and presence of comorbidities, but worsened among patients <60 years of age.

Conclusions:

Black and Hispanic patients have poorer hypertension control compared with whites, and these differences are more pronounced in younger and uninsured patients. While black patients received more intensive antihypertensive therapy, Hispanics were undertreated. Future studies should further explore all aspects of these disparities to improve cardiovascular outcomes.

Underserved Populations

- Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations.
- Our results suggest future genome-wide association scans in Hispanic/Latino populations may require correction for local genomic ancestry at a subcontinental scale when associating differences in the genome with disease risk, progression, and drug efficacy, as well as for admixture mapping.

Genome-wide patterns of population structure and admixture among Hispanic/Latino populations

Katarzyna Bryc, Christopher Velez, Tatiana Karafet, Andres Moreno-Estrada, Andy Reynolds, Adam Auton, Michael Hammer, Carlos D. Bustamante, and Harry Ostrer

PNAS May 11, 2010 107 (Supplement 2) 8954-8961; published ahead of print May 5, 2010 https://doi.org/10.1073 /pnas.0914618107

http://www.pnas.org/content/107/Supplement_2/8954

Physiology & Genetics of Blood Pressure:

- Heart: Your genes impact how hard the heart beats and heart rate (beta blockers used to treat)
- **Kidney:** Your genes impact sodium reabsorption (diuretics used to treat)
- Vessels: Your genes impact vascular constriction and sodium reabsorption (vasodilators used to treat)

The Problem with Standard of Care

Drugs are layered: Each Increase in # of Medications = 85% increase in nonadherence

Therapy is not Uniform (or always down)

Response below is to Hydrochlorothiazide monotherapy:

Fig. 1. Frequency distribution histogram of systolic blood pressure (BP) responses to four weeks of hydrochlorothiazide, 25 mg per day, in the combined sample of 225 African Americans and 280 Caucasians. Symbols are: (\Box) decreases in BP; (\blacksquare) increases in BP. Data are mean = -14.4, SD = 13.4, N = 505.

Fig. 2. Frequency distribution histogram of diastolic blood pressure (DBP) response to four weeks of hydrochlorothiazide, 25 mg per day, in the combined sample of 225 African Americans and 280 Caucasians. Symbols are: (\Box) decreases in BP; (\blacksquare) increases in BP. Data are mean = -7.8, SD = 8.4, N = 505.

In large and well-controlled studies there is an increase in BP in some patients with most types of therapy

1. Chapman et al. Kid. Intern. 61. 2003

THE UNIVERSITY OF ARIZONA.

Side Effect Profile per Drug Class

	Common	Less Common	Rare
Selective β-blocker (METOPROLOL SUCCINATE EXTENDED-RELEASE TABLETS)	Tiredness and dizziness (10%), Depression (5%), Pruritus or rash (5%)	Shortness of breath and bradycardia (3%), Wheezing (bronchospasm) and dyspnea (1%), Cold extremities; arterial insufficiency, usually of the Raynaud type; palpitations; congestive heart failure; peripheral edema;	Peyronie's disease (<0.001%)
Non-selective β-blocker (LABETALOL HYDROCHLORIDE)	Dizziness (11%), Nausea (6%), Fatigue (5%)	Dyspepsia (3%), Nasal stuffiness (3%), Headache (2%), Dyspnea (2%), Vertigo (2%), Ejaculation failure (2%), Impotence (1%), Taste distortion (1%), Edema (1%),	Vomiting (<1%), Diarrhea (<1%), Paresthesia (<1%), Increased sweating (<1%)
CA+ channel blocker (VERAPAMIL HYDROCHLORIDE TABLET, EXTENDED RELEASE)	Contipation (7.3%)	Dizziness (3.3%), Nausea (2.7%), Hypotension (2.5%), Headache (2.2%), Edema (1.9%), CHF/Pulmonary Edema (1.8%), Fatigue (1.7%), Dyspnea (1.4%), Bradycardia (1.4%), AV Block-1°, 2°, and 3° (1.2%), Rash	Flushing (0.6%)
Thiazide and thiazide-like diuretic (INDAPAMIDE)	Headache Dizziness Fatigue, weakness, loss of energy, lethargy, tiredness, or malaise, muscle cramps or spasm, or numbness of the extremities Nervousness, tension, anxiety, irritability, or agitation (≥5%)	Hypokalemia Lightheadedness Drowsiness Vertigo Insomnia Depression Blurred Vision Constipation Nausea Vomiting Diarrhea Gastric irritation Abdominal pain or cramps Anorexia Orthostatic hypotension Premature ventricular contractions Irregular heart beat Palpitations Frequency of urination Nocturia Polyuria Rash Hives Pruritus Vasculitis Impotence or reduced libido Rhinorrhea	-
ACE inhibitor (LISINOPRIL)	Headache (5.7%), Dizziness (5.4%), Cough (3.5%),	Diarrhea (2.7%), Fatigue (2.5%), Upper Respiratory Infection (2.1%), Asthenia (1.3%), Orthostatic Effects (1.2%), Hypotension (1.2%), Vomiting (1.1%), Common	Dyspepsia (0.9%), Paresthesia (0.8%), Decreased Libido (0.4%), Nasal Congestion (0.4%), Influenza (0.3%), Vertigo (0.2%)
Angiotensin-II receptor blocker ((LOSARTAN POTASSIUM)	Upper Respiratory Infection (8%)	Dizziness (3%), Back Pain (2%), Nasal Congestion (2%), Muscle cram (1%), Leg Pain (1%), Sinusitis (1%)	-

10

THE UNIVERSITY OF ARIZONA.

Leading Interdisciplinary Science

Variant Selection

INITIAL SNP SELECTION	14 SNPs based on MAF & functionality
PILOT TRIAL	N=100 trial to test individual genotypes
PANEL REFINED	Removed 2 SNPs, added 5. 17 SNP panel tested
SNP WEIGHTING	Based on delta BP and strength of evidence.
ALGORITHM BUILD	Organ systems weighted against one another. If Fx threshold not met, individual SNPs and haplotypes are considered.
LARGE TRIAL	N=400
MACHINE LEARNING	Tests additional SNPs, adjusts weighting

11

THE UNIVERSITY OF ARIZONA.

Impact on Therapy with Functional Genetics: Difference b/t functional and non functional genotypes on target drug

** no appreciable change

Variant Sorting and Weighting

	GENE	RESULT				
	CYP2D6	Homozygous, Non-Functional Gene	8			
۲ ۲	ADRB1_49	Homozygous, Functional Gene				
RDI	ADRB1_389	Heterozygous, Functional Gene		Selective	ß-blocker	Non-selective
ຽ	ADRB2_16	Homozygous, Functional Gene				D-DIOCKER
	ADRB2_27	Heterozygous, Functional Gene	-			
	WNK1 (1)	Homozygous, Functional Gene				
	WNK1 (2)	Homozygous, Functional Gene	\bigcirc			
AL	WNK1 (3)	Homozygous, Functional Gene		Thia	azide or	
RE	SLC12A3	Homozygous, Non-Functional Gene	\otimes	Thiazide	-like diuretic	
	SCNN1A	Heterozygous, Functional Gene	-			
	Alpha Adducin	Homozygous, Functional Gene	0			
	Renin	Homozygous, Functional Gene	0			
e,	Angiotensin (1)	Homozygous, Non-Functional Gene	\otimes			
ULA ULA	Angiotensin (1)	Homozygous, Non-Functional Gene	8	ACE-	Angiotensin-l	I
ASC	Angiotensin (1)	Homozygous, Functional Gene	\bigcirc	inhibitor	receptor block	er
>	All Receptor	Heterozygous, Functional Gene	-			
	ACE	Homozygous, Functional Gene	\checkmark			
Lik	ely to respond 😑 🛛	Intermediate responder 🛛 ጰ Not likely to re	spond	▲ Not likely to respond		Likely to respond

13

Using AI to build better algorithms

problem – The data is big:

- Complex Genetic profiles
- Interconnected physiology of organ systems
- Multiple drugs / Variable responses
- Multiple gene/gene interactions

Solution – Use AI to solve for complexity:

- Use Random Forest to build multiple algorithms
- Use clinical trial data as training set
- Compete Al's against each other and use tuning to create most predictive

Random Forest Classifier

GCE0187 initialSystolic	: 160 initialDi	astolic: 1	00 initialMap: 1	19.8 curren	tSystolic:	134 currentDiastolic: 94 curr
Кеу	CYP2D6 CT			45	WNK1 (c) CT)
functional	ADRB1_389	C (homo)		100	SCNN1A CT	
intermediate	ADRB1_49 A	(homo)		95	WNK1 (b) C	(homo)
non-functional	ADRB2_27 C	(homo)		8	SLC12A3 (2)	G (homo)
unknown	ADRB2_16 G	Α		90	WNK1 (a) G	(homo)
					Alpha Addu	sin G (homo)
Drug Class Outcome	Train Average					AI Pred
	Train Set-P	Al-Pr	PDiff = AI-P - Se	t-P WP = PC	Diff / Set-P	Effective WP - Ineffective WP
Beta Blocker Not Effective	4.62%	2.42%	-2.19%	-47.53%		
Beta Blocker Effective	24.62%	27.46%	2.84%	11.55%		59.08%
Solo VS Combo Eff:-0.19% VS 3.0	3% Solo VS Cor	nbo HIGH Ef	f:-0.19% VS 2.75%	Got worse: -1.6%	i .	
Diuretic Not Effective	9.23%	6.53%	-2.7%	-29.23%		
Diuretic Effective	33.85%	37.18%	3.34%	9.86%		39.09%
Solo VS Combo Eff:-4.85% VS 17.	42% Solo VS Co	ombo HIGH E	ff:-4.85% VS 13.91%	Got worse: 3.4	6%	
Ace Inhibitor Not Effective	16.92%	14.83%	-2.1%	-12.4%		
Ace Inhibitor Effective	47.69%	50.73%	3.04%	6.37%		18.76%
Solo VS Combo Eff:14.24% VS 11	.88% Solo VS C	ombo HIGH I	Eff:14.24% VS 10.19%	Got worse: 6.	37%	
ARB Not Effective	9.23%	8.19%	-1.04%	-11.25%		
ARB Effective	18.46%	19.39%	0.93%	5.03%		16.28%
Solo VS Combo Eff:-4.2% VS -1.0	2% Solo VS Con	nbo HIGH Eff	-4.2% VS -1.31%	Got worse: 5.12%		

The Result:

- 110 trees each assigned a random set of 6 genes
- Algorithm generated that produces a confidence score for drug response

HE UNIVERSIT

Leading Interdisciplinary Science

Current Clinical Data and Research Studies

Clinical Trials

	1. Geneticure Proof of Concept	2. Fairview pilot RCT	3. Fairview Retro	4. Multicenter Trial
Туре	Retrospective	Prospective	Retrospective	Prospective
Design	Chart Review/Genotyped	Random/Controlled/Blinded	Chart Review/Genotyped	Reduced time to control,lower absolute BP, fewer meds, Adherence
Subjects (n=)	100	130	700	Up to 1000
Completed	2015	2017	2018	Recruiting 2020

Publications

Journal of **Clinical Medicine**

Article

Relationship between a Weighted Multi-Gene Algorithm and Blood Pressure Control in Hypertension

Pamela K. Phelps^{1,†}, Eli F. Kelley^{2,†}, Danielle M. Walla¹, Jennifer K. Ross¹, Jerad J. Simmons¹, Emma K. Bulock¹, Audrie Ayres¹, Monica K. Akre³, Ryan Sprissler^{3,4}, Thomas P. Olson^{3,5} and Eric M. Snyder 3,*

IME	200
	Journal of Medical Economics

Economic evaluation of a pharmacogenomic multigene panel test to optimize anti-hypertension therapy: simulation study

Eli F. Kelley, Eric M. Snyder, Nimer S. Alkhatib, Scott C. Snyder, Ryan Sprissler, Thomas P. Olson, Monica K. Akre & Ivo Abraham

The Effect of Genetically Guided Mathematical Prediction and the Blood Pressure Response to Pharmacotherapy in Hypertension Patients

Eli F Kelley¹⁰, Thomas P Olson^{2,3}, Timothy B Curry^{2,3}, Ryan Sprissler^{2,4} and Eric M Snyder²

School of Kinesiology, University of Minnesota, Minneapolis, MN, USA. 2Geneticure, Inc, Rochester, MN, USA. ³College of Medicine and Science, Mayo Clinic, Rochester, MN, USA. ⁴Department of Genetics, University of Arizona Genomics Core, Tucson, AZ, USA.

Hypertension: An Open Access

3

Association of a Multi-Gene Panel with Blood Pressure Medica-

tion Success in Patients with Hypertension: A Pilot Study

Eric M Snyder¹, Ryan Sprissler¹², Micah Johnson², Greg D Beenken², Timothy Curry⁴, Nicholas Cassato⁴, Eli F Kelley², Thoma

The importance and challenges of developing a pharmacogenetics test for hypertension

Eric M Snyder¹, Eli F Kelley², Ryan Sprissler^{1,3} & Thomas P Olson*.^{1,4} Geneticure, Inc., Rochester, MN 55902, USA ²School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA ³University of Arizona Genomics Core, Tucson, Arizona, AZ 85721 USA ⁴Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA *Author for correspondence: olson.thomas2@mayo.edu

Retro study #1 – testing the genotypes

Change in Diastolic Blood Pressure in Patients with Functional Genotypes who are on a B-Blocker vs. Patients Who are Not on a B-Blocker

*Avg On B-blocker: ~11.6mmHg

*Avg Not On B-blocker: ~6.5mmHg

= 40% Reduction in Stroke= 26% Reduction CV Death

Pilot RCT trial – Inferiority study

- Both arms achieved > 90% control rates at 6 months
- Geneticure arm used slightly few meds to gain control
- SOC arm had many more serious adverse events (SAE)
 - ~70% of SAE occurred in SOC arm
 - Most were due to diuretic side effects

Retro Study #2 – testing the algorithm

Difference in BP from diagnosis to current 1-yr avg if patient is on the FIRST drug recommended by the Geneticure algorithm vs. not

- Avg SBP: 5.8mmHg (21% lower)
- Avg DBP: 3.3mmHg (29% lower)
- Avg MAP: 5.6mmHg (36% lower)

Simulation Population and Assumptions

² Johnson MW, Sprissler R, Olson T, et al. FASEBJ, 2016.

¹Gu Q, Burt VL, Dillon CF, et al. Circulation 2012;126:2105-2114.

Health Economics Results

Leading Interdisciplinary Science

Thanks for listening

